Speaker: Prof. Cheng Wang (王成教授)
Time: 12:15-13:15, 21 February 2025 (Friday) (Beijing time)
Tencent Meeting ID: 307-597-876
Abstract
A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Navier-Stokes system, with logarithmic Flory-Huggins energy potential. In the numerical approximation to the singular chemical potential, the logarithmic term and the surface diffusion term are implicitly updated, while an explicit computation is applied to the concave expansive term. Moreover, the convective term in the phase field evolutionary equation is approximated in a semi-implicit manner. Similarly, the fluid momentum equation is computed by a semi-implicit algorithm: implicit treatment for the kinematic diffusion term, explicit update for the pressure gradient, combined with semi-implicit approximations to the fluid convection and the phase field coupled term, respectively. Such a semi-implicit method gives an intermediate velocity field. Subsequently, a Helmholtz projection into the divergence-free vector field yields the velocity vector and the pressure variable at the next time step. This approach decouples the Stokes solver, which in turn drastically improves the numerical efficiency. The positivity-preserving property and the unique solvability of the proposed numerical scheme is theoretically justified, i.e., the phase variable is always between -1 and 1, following the singular nature of the logarithmic term as the phase variable approaches the singular limit values. In addition, an iteration construction technique is applied in the positivity-preserving and unique solvability analysis, motivated by the non-symmetric nature of the fluid convection term. The energy stability of the proposed numerical scheme could be derived by a careful estimate. A few numerical results are presented to validate the robustness of the proposed numerical scheme.
About the Speaker
Dr. Cheng Wang is a professor in Department of Mathematics at the University of Massachusetts Dartmouth (UMassD). He obtained hid Ph.D degree from Temple University in 2000, under the supervision of Prof. Jian-Guo Liu. Prior to joining UMassD in 2008 as an assistant professor, he was a Zorn postdoc at Indiana University from 2000 to 2003, under the supervision of Roger Temam and Shouhong Wang, and he worked as an assistant professor at University of Tennessee at Knoxville from 2003 to 2008. Dr. Wang’s research interests include development of stable, accurate numerical algorithms for partial differential equations and numerical analysis. He has published more than 130 papers with more than 8000 citations. He has also served in the Editorial Board of “Numerical Mathematics: Theory, Methods and Applications”.